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a b s t r a c t

Using a two-source method, the scattering matrices of 10 sharp-edged thin orifices are

measured under different subsonic flow conditions. The data are analysed in terms of

net acoustical energy balance: the potential whistling frequency range is defined as the

one associated with acoustical energy production.

equal to 0.2–0.35, based on the orifice thickness and the orifice jet velocity. It appears to

depend on the Reynolds number and on the ratio of orifice to pipe diameters.

Tests are performed to compare theoretically and experimentally the potential

whistling frequency to the actual whistling frequency. They are found to coincide within

the measurement uncertainty.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Flow singularities such as valves, taps and orifices are present in large number in industrial pipe systems. In certain
conditions of flow regimes, singularities like single-hole orifices are known to sometimes whistle. This phenomenon is not
taken into account at the design stage, because its occurrence is quite occasional. When it occurs, a high level of vibration
can be generated with a risk of fatigue failure, or a high level of noise can be generated outside the pipe, causing acoustic
nuisance to workers in the installations and to people in the vicinity.

A detailed description of self-sustained oscillations can be found in the literature [1–4]: the whistling phenomenon is
known to be related to the instability of the shear flow, associated with an hydrodynamic feedback or with an acoustic
feedback. Hydrodynamic feedback occurs when the vortices generated along the shear layer reach an area where the steady
velocity exhibits a gradient, as for instance if an abrupt expansion is present downstream the shear layer. Feedback can
happen as well in reverberating acoustic conditions. In both cases, the feedback velocity fluctuation modulates the vorticity
in the shear layers, and energy is transferred from the main flow to self-sustained oscillations. The whistling dominated by
hydrodynamic direct feedback, such as the edge-tone, is most extensively discussed by Refs. [5–9]. Acoustically driven
oscillation in cavities have been extensively studied by, among others, Refs. [1,10–14]. The whistling of an orifice in a
confined flow with acoustical reflecting conditions has been investigated by Rockwell [6] and Anderson [15–21]. Vortex
shedding in a very thick orifice is described in Ref. [22]. A whistling orifice in an industrial configuration is reported
in Ref. [23].
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In the first part, the linear response of a non-whistling orifice determined by means of a two-source method is
investigated, in a manner similar to recent experiments [24]. The whistling potentiality of an orifice is experimentally
determined from its scattering matrix, rewritten in terms of net production of acoustical energy. A Strouhal frequency
associated with the maximum of whistling potentiality is obtained from measurements on 10 sharp-edge orifices with
different pipe flows.

In the second part, the actual whistling of an orifice is investigated by arranging it inside a pipe terminated by acoustical
reflectors, forming an acoustical resonator. The whistling frequencies are compared to the potential whistling frequencies.
The neutral stability of the system is studied by using a linear model incorporating the measured scattering matrix for the
orifice.

2. Theoretical criterion for the whistling ability of an orifice

A theoretical criterion for the whistling ability of a flow singularity has been proposed in Ref. [25], based on the acoustic
energy balance of the incipient and of the scattered acoustic waves measured in non-whistling conditions. The definition of
acoustic energy in steady flows has been given by Morfey [26], and it can be shown that the energy balance expression
requires the use of the so-called exergy waves [27], defined by

P� ¼ ð1�M0Þp
�, (1)

where M0 is the Mach number of the steady flow in the pipe, p� is the propagating pressure, the þ sign stands for
propagation in the flow direction and the � sign stands for propagation in the reverse direction.

Considering incipient and scattered pressure waves in the harmonic regime, one defines the exergy scattering matrix of
an orifice as a 2� 2 complex matrix:

Pþ2
P�1

 !
¼ Se

Pþ1
P�2

 !
. (2)

Let the acoustic energy production of the orifice be characterized by a dimensionless number, equal to the difference of the
incipient and of the scattered acoustic power, divided by the incipient power. Due to energy properties, this ratio is a real
number, and it can be shown [25] that its higher and lower possible values are the eigenvalues of the matrix I� S�eSe, where
the star stands for the complex conjugate. The criterion can be expressed the following way: an orifice is prone to whistling
in adequate acoustic conditions if one of the eigenvalues is negative, because the orifice can amplify acoustic waves.
The other way around, if both eigenvalues are positive, the orifice never whistles.

It is worth mentioning the fact that such a linear criterion provides only instability frequencies, and not the actual
whistling frequencies. In self-sustained oscillation regime, nonlinear effects occur which stabilize the amplitude of the
pressure oscillations, and there is no theoretical reason why the whistling frequency should match the instability
frequency. From an experimental point of view, the literature reports that the whistling frequency is often close to the
linear instability frequency, but does not coincide [28,29]. As will be seen, this is the case in the present study.

3. Experimental procedure

In order to experimentally determine the coefficients of the exergy scattering matrix of the previous section, the forward
and backward pressure propagating waves need be measured using the two-microphone method. The test section consists
of a straight pipe with an inner diameter D equal to 30 mm and a total length of 6 m (see Fig. 1), with quasi-anechoic
terminations arranged upstream and downstream of the measurement area. Acoustic pressures are measured upstream
and downstream of the orifice by two series of four microphones B&K 4938 with Nexus 2690 amplifiers; the distances
between successive sensors are, respectively, 63.5, 211.5 and 700 mm in order to optimize the identification of propagating
pressure waves. A fully automated system determines the incipient and scattered propagating pressure waves using a two-
source method [30,31]: the loudspeaker frequency ranges from 400 to 5000 Hz with steps of 10 Hz, at each change of
frequency, a settling time of 1000 cycles is used to establish the response, and the measurement is made over a period of
1000 cycles. More details about the rig and the measurement procedure can be found in Refs. [32,30,33]. The duct
flow

u1u2u3 4d3d2d1du4
downstream
source

upstream
source

p1
+

p1
-

4 upstream
microphones

4 downstream
microphones

p2
+

p2
-

measured
device

Fig. 1. The measurement zone: from both sides of the orifice, four fluctuating pressure transducers and an excitation source are used.
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Fig. 2. Scheme of the sharp angle orifices: circular-centred, single-holed, without bevel: (a) front view and (b) side view.
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Fig. 3. Geometrical dimensions of the tested orifices.
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upstream of the first series of microphones is 2 m long, so that the flow is fully developed. The Reynolds number in the pipe
Re ¼ U0D=n varies from 2� 103 to 8� 104, and the pipe Mach number varies from 2:6� 10�3 to 1:1� 10�1.

All tested orifices exhibit a circular centred single hole. Ten orifices have been studied, with sharp angle edges on both
sides: an overview of their geometry features is illustrated in Figs. 2 and 3, where the reduced thickness t=D and the
reduced inner diameter d=D are plotted. As the thickness-to-inner diameter ratio t=d varies from 0.15 to 1.5, these orifices
are thick in the sense of Ref. [34]. Furthermore, one orifice with a bevel on one side was tested.

To ensure the adequacy of the experimental procedure, an evaluation of the influence of the loudspeaker sound level
was performed. Nonlinear effects were found to occur when the root mean square of the acoustic velocity exceeded 10% of
the steady flow velocity, so that the level of the loudspeaker pressure was set at approximately 130 dB SPL inside the pipe.
Moreover, the downstream quasi-anechoic termination was once replaced by an open pipe termination, and the scattering
matrix coefficients differed by about � 1%, that is, within the experimental margin of error.

4. Instability frequencies of orifices

4.1. Case of a sharp-edge orifice

In this section, results obtained with a sharp-edge orifice with t=D ¼ 0:17, d=D ¼ 0:63 ð Þ and a Mach number equal to
4:2� 10�2 are discussed. Similar results were obtained with other orifices but for some differences that are discussed in
the next section.

The first step consists in determining the ratio of incipient and transmitted propagating pressure waves, as illustrated in
Fig. 4. It can already be noted that in the frequency range of 1400–2100 Hz, the scattered pressure waves exhibit a higher
value than the incipient ones, so that the orifice behaves as an acoustic amplifier, which is the basis of the instability
mechanism. Such an effect is not mentioned in the recent works of Abom et al. [24], because the instability frequency range
of the orifice they studied was probably far beyond the loudspeaker frequency range.
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As regards the low frequency values of the transmission coefficients, they are consistent with a quasi-stationary model
[32,35] using a vena contracta coefficient equal to about 0.7 (see Ref. [36] for more details).

The next step consists in evaluating the eigenvalues and the eigenvectors of I� S�eSe as prescribed in Section 2. As can be
seen in Fig. 5, one of the eigenvalues is close to zero and the eigenvector associated with the vanishing eigenvalue is such
that Pþ1 ¼ P�2 (see Fig. 6); this can be easily explained, because, as long as local compressibility is not at stake, an equal
increase of the pressure on both sides of the orifice has no effect on the acoustic velocity. Hence, assuming the pressure to
be close to the exergy for low Mach numbers, and the acoustic velocity variation being equal to zero on each side of the
orifice, the upstream and downstream pressures are equal. If the incipient exergy waves are such that Pþ1 ¼ P�2 , one is thus
led to the conclusion that Pþ1 ¼ Pþ2 and P�1 ¼ P�2 , and the eigenvalue of I� S�eSe is zero.

The other way around, the other eigenvalue becomes negative in the frequency range of 1400–2100 Hz, highlighting the
whistling ability of this orifice. The eigenvector associated with the non-vanishing eigenvalue is such that Pþ1 ¼ �P

�
2

(see Fig. 7). This corresponds to an excitation of the orifice by a velocity fluctuation, which is classically known to best
enhance vortex shedding (see for instance Ref. [37]). It is hence possible to evaluate the whistling ability of an orifice by
experimentally determining its scattering matrix.

The influence of the flow regime can be investigated with the help of scaling laws for the frequency and for the
amplitude of the eigenvalues. The frequency is made dimensionless, introducing a Strouhal number based on the orifice
thickness t and the orifice velocity Ud ¼ U0 ðD=dÞ2:

St ¼
ft

Ud
. (3)
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0
Frequency (Hz) 

Pr
es

su
re

 w
av

e 
tr

an
sm

is
si

on

1000 2000 3000 4000

Fig. 4. Absolute value of the ratio of the transmitted and of the incipient propagating pressure waves in the forward (in black) and backward direction (in

grey), for a circular centred single-hole orifice (orifice : t=D ¼ 0:17, d=D ¼ 0:63, under M0 ¼ 4:2� 10�2).
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Fig. 6. Amplitude ratio of the eigenvector associated to the vanishing eigenvalue (orifice : t=D ¼ 0:17, d=D ¼ 0:63, under M0 ¼ 4:2� 10�2). Black ‘þ’:
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Other length scalings have been tested and led to a less satisfactory collapse. As regards the eigenvalue amplitude, the best
compromise consists in dividing it by the Mach number, yet this empiric scaling would require further work to be fully
assessed. As can be seen in Fig. 8, the data collapse reasonably well for the orifice previously studied.

4.2. Behaviour of the other sharp-edge orifices

The other sharp-edge orifices exhibit a behaviour similar to the one of the previous section, but for a few differences.
First, it appears that some orifices with a larger thickness exhibit two ranges of frequencies associated with a negative
eigenvalue, as shown in Fig. 9. One needs then to take into account the possible existence of higher orders of potential
whistling frequencies.

A peak Strouhal number Stp is now defined as being associated with the minimum eigenvalue, related to the first or to
the second order of potential whistling frequencies. This Strouhal number is plotted against the pipe Reynolds number
Re ¼ U0D=n in Fig. 10 for all sharp-edge orifices in different flow regimes. For fully turbulent pipe flow (oRe\5� 103), the
critical Strouhal numbers obtained for the first mode are in the range 0.2–0.3, in agreement with literature; Ref. [17]
indicates a value around 0.26–0.29 for orifices with 0:1pt=dp0:5, in a configuration of a free jet (orifice placed at the pipe
termination). Furthermore, there seems to exist an effect of the laminar–turbulent transition upon the Strouhal number,
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which may be related to the variations of the vena contracta section. Blevins [36] indicates that the vena contracta ratio
decreases for d=D ¼ 0:3 from av ¼ 0:70 to 0:60 as Re increases from 103 to 104; for d=D ¼ 0:7, the vena contracta ratio
decreases from av ¼ 0:81 to 0.65 as Re increases from 103 to 104.

Various linear fits on data with multiple parameters have been tested to estimate the dependence of Stp on different
parameters: 1=Reb, lnðReÞ, ðd=DÞb, ðt=dÞb, ½D=ðD� dÞ�b, with b40. As a result, it is found that the critical Strouhal number is
mainly a function of the Reynolds number Re and the geometrical parameter D=ðD� dÞ. For the first hydrodynamic mode,
the best linear regression giving the least standard deviation (57% of relative error on 60 data points) is

Stp ¼ 0:2420 1þ
31:69ffiffiffiffiffiffi

Re
p � 0:0657

D

D� d

� �
; ReX5� 103. (4)

4.3. Case of an orifice with a bevel on one side

Literature [4,38] indicates that the presence of a bevel on the upstream side of an orifice enhances its whistling ability
whereas a bevel on the downstream side hampers it. In order to test the consistency of the instability criterion, an orifice
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with a thickness equal to 5 mm, a hole diameter equal to 10 mm and a bevel with a radius equal to 1 mm on one side was
made.

The non-vanishing eigenvalues associated with this orifice are plotted in Fig. 11 for a pipe Mach number equal to
7:6� 10�3; a potentially whistling frequency range is found when the orifice is arranged bevel upstream, whereas no
whistling frequency range is found when the orifice is arranged bevel downstream. Hence, the whistling criterion agrees
with classical results.
5. Whistling frequencies of an orifice in a resonant pipe

5.1. Experimental results

In order to validate the criterion, one orifice with a large negative eigenvalue was arranged in a pipe with acoustic
reverberating conditions (see Fig. 12). The tested orifice exhibits the following features: t=D ¼ 0:16 and d=D ¼ 0:33 (�).
Acoustic reflecting conditions are arranged from both sides of it, in order to provide the acoustic feedback necessary for
whistling. At 0.137 m upstream, an expansion chamber imposes a high reflection coefficient: jRuj � 0:8 in the frequency
range of 400–2500 Hz, weakly dependent on the flow velocity (see Fig. 13). An absorbing foam is placed inside the
expansion chamber to prevent any resonance inside the chamber. At 0.270 m downstream, an unflanged open pipe
termination imposes a high reflection coefficient: jRj40:4 in the frequency range of 400–2500 Hz (see Fig. 14).

One spectrum obtained when whistling occurs is shown in Fig. 15. A sharp peak appears at the whistling frequency,
typical of self-sustained oscillations. When increasing the steady flow velocity, the whistling frequency jumps from
one acoustic mode to the next one (see Fig. 16), as is classically the case in vortex shedding with lock-in issues. As shown in
Fig. 17, whistling frequencies correspond to Strouhal numbers ft=Ud varying from 0.2 to 0.35, i.e., in the range of potential
whistling Strouhal numbers described in the former section. No significant difference between the potential and the actual
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Fig. 12. The studied whistling configuration, constituted by an orifice under steady flow, an expansion chamber upstream and an open pipe termination

downstream imposing reflecting conditions. The resulting noise (possibly whistling) is measured by means of a microphone placed outside of the pipe, at

the level of the pipe termination, at a distance of 20 cm from the pipe axis.
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whistling frequency was observed during the tests, and further work would be needed to determine if this should always
be the case.

It is worth mentioning here the fact that the range of Strouhal number observed during the tests is consistent with
whistling frequencies observed by Ref. [39] in water in an industrial loop in the presence of cavitation phenomena. This
observation suggests that the Strouhal number is neither sensitive to the compressibility of the fluid nor to the presence of
cavitation when in water, and that it does not vary significantly when the Reynolds number becomes sufficiently large.

5.2. An attempt to predict the actual whistling frequency

An approximate value of the whistling frequency of an orifice under the effect of a given set of acoustic boundaries can
be determined by describing the orifice by its scattering matrix Se, by describing the boundary conditions by upstream and
downstream acoustic reflections coefficients (Ru and Rd, respectively) and by identifying the exergy propagating waves P�

to the pressure propagating waves p�. With the notations of Fig. 18, the harmonic regime equations are

1 �Ru 0 0

0 0 �Rd 1

Rþe �1 0 T�e
Tþe 0 �1 R�e

0
BBBB@

1
CCCCA

Pþ1
P�1
Pþ2
P�2

0
BBBB@

1
CCCCA ¼

0

0

0

0

0
BBB@

1
CCCA. (5)

The whistling frequency is such that non-trivial solutions of Eq. (5) exist. Although frequencies in the complex space
should theoretically be looked for, it is assumed here that the whistling frequency is such that the determinant of Eq. (5)
comes close to zero for real frequencies. Simplified expressions of the acoustic reflection coefficients are used, namely,
upstream (see Fig. 13):

Ru ¼ �0:8 e2jkðLuþduÞ, (6)
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Fig. 18. Scheme of the model to predict the whistling frequency, in the plane wave approximation, using the scattering matrix of the singularity Se and the

acoustic reflection coefficients Ru and Rd , respectively, upstream and downstream of the singularity.
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where the plane wavenumber k is associated with the speed of sound c and with the current frequency by k ¼ 2pf=c, where
Lu is the distance between the expansion chamber and the orifice and where du ¼ 0:82D=2 is the end correction of a flanged
opening (exit of a duct with infinite baffle, [40]). The downstream acoustic reflection coefficient is (see Fig. 14):

Rd ¼ �½0:73� aðf � f ref Þ� e
�2jkðLdþddÞ, (7)

where Ld is the distance between the orifice and the open end, a ¼ 1:5� 10�4 Hz�1, f ref ¼ 1000 Hz and dd ¼ 0:61D=2
corresponds to the end correction of an unflanged opening (exit of a duct with thin walls) at low frequency [41]. The inverse
of the determinant obtained using the approximated reflection coefficients and the measured scattering matrix coefficients
is plotted in Fig. 19.
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Despite the approximations, the model gives satisfactory results: the whistling frequency is predicted here within a
relative uncertainty of 5%. Furthermore, it can be checked that below a certain amplitude of the reflection coefficients, the
model predicts no whistling. Both reflections, upstream and downstream, are necessary to obtain whistling.
6. Conclusion

A two-source method was used to measure the acoustical linear response of orifices under subsonic flow conditions. For
given main flow conditions, the net acoustical power generated by the orifices is positive within a certain frequency range.
At a given frequency, the highest flow-acoustics interaction occurs when the incipient pressures have opposite phases, as
classically observed in the literature.

For sharp-edge orifices, the maximum power generated by the flow passing through the orifice corresponds to a
Strouhal number equal to 0.2–0.35, based on the orifice thickness and the orifice flow velocity. This Strouhal number
appears to slightly depend on the Reynolds number and on the ratio of orifice to pipe diameters. Potential whistling
Strouhal numbers obtained are close to those obtained by Ref. [20] in air (measurements corresponding to low Reynolds
numbers), and in water (water flow in weak cavitating condition and high Reynolds number from Ref. [39]).

Tests are performed to compare theoretically and experimentally the potential whistling frequency to the actual
whistling frequency. They are found to coincide within the measurement uncertainty.

The theoretical criterion proposed by Auregan and Starobinski is experimentally validated. It can be used to predict the
whistling ability of a pressure drop device under the effect of propagating plane pressure waves.
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